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Abstract 

While blockchain technology holds the potential to provide verifiable food traceability, its 
adoption in supply chains hinges on its profitability. We test a geographical-price-informed choice 
experiment design to estimate U.S. consumer willingness to pay for quick-response (QR) codes 
that lead to blockchain-verified traceability information on cow’s milk packaging. We find that 
consumers are willing to pay a premium of $0.61 per half-gallon carton with QR codes relative to 
no QR code, but apply a discount of $0.13 when blockchain verification is added. Preferences vary 
based on consumers’ frequency of QR code usage following the COVID-19 pandemic.  

Keywords: COVID-19, distributed ledger technology, quick response code, stated preferences, 
willingness to pay 
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Introduction 

Food traceability is “the ability to follow the movement of a food product and its ingredients 
through all steps in the supply chain (FDA, 2024).” Traceability of food products is especially 
important for responsiveness and accountability in the event of food safety incidents. The United 
States Centers for Disease Control and Prevention (CDC) estimates that 48 million people get sick 
and 3,000 people die from foodborne illnesses annually in the United States (CDC, 2024). A robust 
traceability system can help prevent foodborne illness outbreaks by enabling the rapid 
identification and containment of contamination sources. Beyond safety, traceability has become 
increasingly important to consumers, who are demanding greater transparency about food origins, 
company values, and agricultural production practices, particularly those associated with credence 
attributes, which cannot be directly verified by consumers and are therefore more susceptible to 
food fraud. Statistics on internet search and purchasing trends over the past decade show growing 
consumer interest in sustainability certifications and alternative production practices, with internet 
searches for sustainable goods increasing 71% from 2016 to 2020, and sales for carbon-labeled 
products growing from $1.7 billion in 2020 to $3.4 billion in 2021 (Kerle, 2021). Additionally, 
organic sales in the United States grew by an average of 8% each year over the past decade (USDA-
ERS, 2025).  

A technology that could modernize food traceability is blockchain, which has been identified as a 
tool to assist with managing foodborne illness outbreaks, reducing massive inventory losses, and 
combating inauthentic labeling (Casino et al., 2021; Croft, 2021; Manning and Kowalska, 2021). 
Blockchain is a distributed digital ledger technology, a shared database accessible to all network 
participants. All parties involved must agree on the accuracy of information before it can be added 
to the database as a record, also called a block. When an error is corrected or information is 
changed, these changes are logged as a new block appended to the existing chain rather than 
replacing a previous block (Gao, Hatcher, and Yu, 2018). Unlike applications of blockchain in 
finance, which typically use decentralized systems, food and agriculture companies use more 
centralized blockchain-based traceability enterprise systems (Collart and Canales, 2022). 
Blockchain-based traceability applications are being used primarily for food safety purposes in the 
United States. For example, Walmart collaborated with IBM to implement a blockchain-based 
system that tracks leafy greens throughout the supply chain and aims to allow faster identification 
of sources of foodborne illness outbreaks (Walmart, 2021). 

One consumer-facing application of blockchain-based traceability is the use of quick response 
(QR) codes on product packaging. Several companies, including Nestlé, Carrefour, Folgers, and 
Starbucks, have begun providing blockchain-verified traceability information to consumers via 
QR codes (Collart and Canales, 2022). Notably, consumers can also access nonverified traceability 
information via QR codes linked to standard (non-blockchain) traceability systems. However, by 
combining blockchain’s security features and traceability systems with access to information via 
QR codes, consumers could view relevant product information, such as food origin, supply chain 
journey, company values, verified organic certification, carbon footprint certificates, or other 
production practices disclosures. In terms of food safety, blockchain-enabled traceability systems 
would allow companies to quickly notify consumers of foodborne illness outbreaks or product 



Nasekos et al.  Journal of Food Distribution Research 

July 2025  3 Volume 56, Issue 2 

recalls via QR codes, a feature that some blockchain-based traceability companies, such as 
IDLocate in New Zealand, already offer. While companies expect consumers to utilize and value 
QR codes on their products, only a few studies have examined consumer preferences and 
willingness to pay (WTP) for both QR code traceability and blockchain technology, particularly 
in the context of beef (Lin et al., 2022; Shew et al., 2022). Understanding whether consumers are 
willing to pay a price premium for these technologies can help supply chain stakeholders examine 
the economic viability of their adoption.  

The onset of the COVID-19 pandemic heightened concerns about food safety, as supply chain 
disruptions, labor shortages, and transportation challenges hindered the procurement of safe food 
products and packaging (Trmčić et al., 2021). The pandemic also reinforced the connection 
between how food is accessed and technology, with restaurants adopting QR code menus and 
payment methods. In response to the need for contactless methods of payment and health 
information dissemination during the pandemic, QR code usage emerged as a touchless way to 
provide and acquire information, and they have since become more widely used in a variety of 
settings (Iskender et al., 2022; Tu et al., 2022; Goggin and Wilken, 2024). Overall, the pandemic 
highlighted the importance of modernizing the food industry, supply chains, and food traceability, 
and may have impacted the frequency with which consumers use technologies like QR codes 
(Segovia, Grashuis, and Skevas, 2022).  

In this study, we use two discrete choice experiments (DCEs) to investigate consumer preferences 
and WTP for QR codes that provide blockchain-based traceability information for fluid cow’s milk. 
We study bovine milk—specifically cow’s milk—for four main reasons. First, while fluid cow’s 
milk consumption has steadily declined since the 1940s, it remains a staple in American 
households, with 92% of households purchasing it in 2017 (Stewart et al., 2020) and overall dairy 
consumption increasing through the consumption of milk solids. We use the term “cow’s milk” to 
denote milk originating from Bos taurus cattle, the predominant breed used for milk production in 
the United States. Second, recent studies are exploring how blockchain technology can enhance 
dairy supply chains. Studies have suggested potential effectiveness in detecting food fraud, 
reducing costs, decreasing traceability time, and improving overall product quality (Casino et al., 
2021; Leung, Chapman, and Fadhel, 2021). Third, the traceability of cow’s milk has gained 
attention due to the multistate outbreak of Highly Pathogenic Avian Influenza (HPAI) A(H5N1), 
or “bird flu,” among dairy cows and the first mammal-to-human transmission in April 2024 (CDC, 
2024). As of May 27, 2025, there have been 1,072 dairy herd outbreaks across 17 states and 70 
human cases linked to contact with infected animals (CDC, 2025). While pasteurized milk is 
considered safe (FDA, 2025) and milk-related foodborne illness is much less common than in 
high-risk foods like leafy greens, eggs, and raw meat, foodborne illness incidents have occurred—
174 cases and 17 deaths were linked to pasteurized milk between 2007 and 2020 (Sebastianski et 
al., 2022). Traceability improvements could help prevent these incidents and further enhance 
safety, for example, by tracking raw milk, aged raw milk cheeses, and cold chain integrity. Despite 
FDA warnings, consumer demand for raw milk is rising (Lando et al., 2022), and ongoing public 
health concerns remain regarding raw milk and aged raw milk cheeses. While laboratory research 
methods differ from commercial pasteurization, which the FDA confirms inactivates the virus, 
recent research indicates that some heat treatments can reduce HPAI A(H5N1) load but may not 
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fully inactivate it (Guan et al., 2024), and that aging of raw milk cheeses, which can legally cross 
state lines, may not be sufficient to eliminate viable virus (FDA, 2025). Additionally, monitoring 
temperature control throughout the cold chain is critical for both pasteurized and raw milk. For 
example, HPAI A(H5N1) has been shown to remain infectious for several weeks in raw milk stored 
at 4°C (Guan et al., 2024). Fourth, consumer demand for transparency is growing, particularly 
regarding organic production and carbon footprint claims in high-emission animal-based foods. 
Enhanced traceability can help verify these credence attributes and build consumer trust.  

With growing interest in digital food traceability there is a need for research on consumer and 
producer preferences to evaluate the economic viability of blockchain technology as a means to 
modernize the dairy supply chain. To date, few studies have focused on dairy products in this 
context (Li et al., 2023; Tran et al., 2024). We seek to fill this gap. Our first objective is to estimate 
consumer preferences and willingness to pay for QR codes that provide access to standard or 
blockchain-verified traceability information, carbon footprint reduction labels, and organic labels 
in cow’s milk. We hypothesize that consumers will prefer products with QR codes that provide 
access to traceability information over products without traceability codes. While we are not aware 
of other studies evaluating consumer WTP for the provision of blockchain-verified information 
via QR codes on milk products, studies have been conducted for other commodities. Shew et al. 
(2022) found that consumers placed little additional value on beef products using blockchain for 
supply chain traceability. In contrast, Lin et al. (2022) found that consumers in China were willing 
to pay an additional $0.63 per pound for beef that used blockchain traceability over beef that used 
alternative traceability methods. Although Lin et al. (2023) did not calculate WTP, they found that 
consumers in China preferred organic milk with blockchain traceability over organic milk with 
other forms of traceability. More similar to our study, Tran et al. (2024) found that consumers in 
Greece were willing to pay an additional €0.755 ($0.79) for QR codes on feta cheese and €0.264 
($0.28) for the use of blockchain technology to trace feta products throughout the supply chain. 

Our second objective is to evaluate whether and how a novel DCE design with geographically 
informed price levels that account for geographical differences in prices across U.S. states affects 
food choice behavior in U.S. consumers. In the geographical-price-informed DCE design, U.S. 
regions (Northeast, Southeast, Midwest, South Central, Southwest, Northwest, and Alaska) are 
first classified as either high cost or low cost based on whether the average retail price in the region 
is higher or lower than the average national retail price. Then, a respondent’s state of residence 
determines the price levels they see in the DCE, ceteris paribus. That is, respondents residing in 
states within high-cost regions are shown higher price levels, whereas those in low-cost regions 
see lower price levels, aiming to reflect the retail pricing patterns of their respective regions. We 
hypothesize that this geographically price-informed DCE design will provide a better model fit 
than a standard DCE design, in which price levels are commonly distributed to encompass the full 
range of existing prices in the United States. This objective investigates a common challenge when 
conducting choice experiments: selecting a price range that accurately reflects the market prices 
for a product (Aravena, Martinsson, and Scarpa, 2014; Contini et al., 2019; Caputo and Scarpa, 
2022). Previous studies have found that differing price vectors in DCEs can yield different 
outcomes (Carlsson and Martinsson, 2008; Aravena, Martinsson, and Scarpa, 2014; Caputo, Lusk, 
and Nayga, 2018; Contini et al., 2019; Kilders and Caputo, 2023). Furthermore, prices fluctuate 
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over time and across space, impacting consumers’ reference prices, which they use to compare the 
prices presented to them in a DCE, thereby influencing their choices (Caputo, Lusk, and Nayga, 
2018). Consumers’ reference prices and the prices they might pay in the real world can differ, 
leading to inaccurate WTP estimates (Lim and Wuyang, 2023). This issue highlights the need for 
more research into alternative price vector designs, such as our geographical-price-informed 
design, which better align with consumers’ reference prices. We build upon a recent study that 
evaluated a reference-price-informed DCE design and found that it resulted in more conservative 
estimates and better model fit than the standard price-vector design (Kilders and Caputo, 2023). In 
this study, the researchers compared each respondent’s self-reported reference price to the average 
of the price levels used in the experiment (i.e., $20.49 per lb. of ribeye steak) to determine whether 
respondents in the reference-price-informed design saw higher or lower price levels in the DCE. 
We propose using a geographical-price-informed design that reflects the different price levels 
consumers are likely to encounter in their respective regions in the United States, accounting this 
way for price differences across locations.  

Methodology 

Survey and Discrete Choice Experiment (DCE) Designs  

Following approval from the university Institutional Review Board (Protocol #IRB2023-0841), 
we developed and administered two online surveys in December 2023 using Qualtrics Research 
Services, a consumer research panel company. Both surveys included unlabeled DCEs to evaluate 
consumer preferences for cow’s milk. The first survey included a standard DCE design covering 
a range of prices representative of the whole United States market. The second survey implemented 
our geographical-price-informed DCE design, where the price range shown to participants was 
tailored based on their regional location. A total of 557 responses were collected for the survey 
with the standard DCE design, while 554 responses were collected for the survey with the 
geographical-price-informed DCE design, for a combined sample size of 1,111 respondents.   

Each survey included five sections. The first section consisted of screening and demographic 
questions. To participate, respondents were required to commit to providing quality answers, be 
over the age of 18, reside in the United States, be the primary grocery shopper for their household, 
own a device capable of scanning QR codes (e.g., a smartphone, tablet, or iPod touch), and have 
purchased cow’s milk within the past month. To ensure that our sample was representative of the 
U.S. population, we established quotas for age, gender, and race. In the second section, respondents 
were asked about their knowledge of carbon footprint labeling, QR codes, agriculture, and 
blockchain technology. This section also included information about blockchain technology and 
QR codes (see Figures A1 and A2 in Appendix), along with the option for respondents to click a 
link and view an example website illustrating product information to simulate the experience of 
scanning a QR code on an actual product (see Figure A3 in Appendix). The third section provided 
information about the choice experiment and descriptions of the different product labels 
respondents might see during the choice experiment. The fourth section included the DCE. The 
fifth and final section included questions to gather information on respondents’ household 
consumption of cow’s milk, concern for the environment, and frequency of QR code usage before 
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and after the COVID-19 pandemic. This section also inquired about the level of trust in the United 
States Department of Agriculture (USDA) and third-party verification companies to accurately 
verify organic and carbon footprint claims. We also gathered sociodemographic information, 
including income, marital status, political leaning, education level, and employment status. 

Before distribution, we pretested each survey instrument. A “speed check” threshold, equal to half 
the median completion time during pretesting, was implemented in the final version of the survey. 
We excluded respondents who completed the survey faster than this threshold from the final 
sample. We also implemented additional measures to ensure response quality. Survey sections that 
required respondents to read information had a delay before the “submit” button would appear to 
ensure that respondents could not click through those sections without spending time on each page. 
Additionally, we included an attention-check question in the DCE section that dropped 
respondents who failed to read the entire question and answer as instructed to ensure respondents 
were carefully considering the choice sets and not rushing through them. Lastly, we included a 
cheap talk script before our DCE to mitigate hypothetical bias (Lusk, 2003; Carlsson, Frykblom, 
and Lagerkvist, 2005; Fang et al., 2020).  

Table 1 outlines the attributes and attribute levels used in our DCEs, which include QR code 
information, organic status, carbon footprint label, and price. The QR code attribute had three 
levels: (i) No QR code: the product has no QR code and no access to product traceability 
information, (ii) Standard QR code: the product has a standard QR code that provides traceability 
information, and (iii) Blockchain QR code: the product has a blockchain-verified QR code 
providing traceability information tracked through blockchain technology. In both surveys, 
respondents were shown examples of the product information accessible via these QR codes, 
including food tracing information about the product’s journey from the farm to the store and, 
when applicable, copies of the product’s organic certificate and carbon footprint claim certificate. 

There were two levels for the organic status attribute: (i) USDA organic label and (ii) No USDA 
organic label. For the carbon footprint label, we used five levels. The first three levels correspond 
to newly released labels from The Carbon Trust, a nonprofit organization that launched the world’s 
first carbon footprint label in 2007 (Carbon Trust, 2023), whereas the fourth level represents a 
USDA label. The carbon footprint attribute levels are as follows: (i) Carbon Emissions Reduction 
Achieved: This label indicates the product’s carbon footprint has decreased from one year to the 
next, with the manufacturer’s commitment to future reductions, (ii) Carbon Emissions Reduction 
Planned: This label indicates that the manufacturer has a carbon management plan to reduce the 
product’s carbon footprint, (iii) Footprint Lower Than Market: This label indicates that the 
product’s carbon footprint is at least 5% lower than the market average for equivalent products, 
(iv) USDA Process Verified Climate-Friendly: This label indicates that the product’s carbon 
footprint is at least 10% lower than an industry benchmark, and (v) No carbon footprint label.  

We used weekly data from the USDA Agricultural Marketing Service’s National Retail Reports 
on Dairy (USDA-AMS, 2023), available at the national and regional levels, to obtain average retail 
prices for half-gallon containers of cow’s milk during October 2023. In the geographical-price-
informed DCE design, seven U.S. regions—Northeast, Southeast, Midwest, South Central, 
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Southwest, Northwest, and Alaska—were first classified as either high cost or low cost based on 
whether their average regional retail price exceeds or falls below the average national retail price. 
Then, respondents were shown price levels in the DCE based on their stated current state of 
residence. Specifically, respondents residing in states within high-cost regions where the average 
retail price exceeded the average national retail price were shown a DCE with price levels ranging 
from $2.29 to $5.79, in $0.70 increments. Respondents residing in states within low-cost regions 
where the average price fell below the average national retail price saw a DCE with price levels 
ranging from $1.79 to $4.29, in $0.50 increments. Figure A4 and Table A3 in the Appendix 
illustrate the high-cost and low-cost regional classifications and the states included in each. The 
only difference between the geographical-price-informed and standard DCE designs was the price 
levels presented to respondents. In the standard DCE design, all respondents, regardless of location, 
saw uniform price levels ranging from $1.79 to $5.79, in $0.80 increments.  

The selection of price ranges across all DCE designs was informed by the distribution of national 
and regional prices for conventional and organic cow’s milk, as well as the behavioral pricing 
strategy of 9-ending prices (Snir and Levy, 2020). Moreover, following the approach of Kilders 
and Caputo (2023), the experimental design was structured to better reflect U.S. market conditions, 
where animal-based food products with lower carbon footprint or organic labels are generally less 
available and priced higher than conventional options. In our study, if the product had a carbon 
label (Carbon Trust or USDA Process Verified Climate-Friendly) or a USDA organic label, its 
price was drawn from the upper end of the price distribution: $3.39 to $5.79 in the standard DCE, 
$3.69 to $5.79 in high-cost regions, and $2.79 to $4.29 in low-cost regions. Conversely, if the 
product did not have either label, its price was drawn from the lower end of the price distribution: 
$1.79 to $4.19 in the standard DCE, $2.29 to $4.39 in high-cost regions, and $1.79 to $3.29 in low-
cost regions. 

Table 1. Attributes and Levels 

Attribute Level 

QR code information No QR code 
Standard QR code* 
Blockchain QR Code 

USDA organic label No USDA organic label* 
USDA organic label 

Carbon footprint label Carbon footprint reduction achieved label 
Carbon footprint reduction planned label 
Carbon footprint lower than market label 
USDA process verified climate-friendly label 
No carbon footprint label* 
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Table 1 (cont.) 
Attribute Level 

Price  $1.79, $2.59, $3.39, $4.19, $4.99, and $5.79 if United States  
$1.79, $2.29, $2.79, $3.29, $3.79, $4.29 if low-cost state 
$2.29, $2.99, $3.69, $4.39, $5.09, $5.79 if high-cost state 

Note: *Represents a reference level in the experimental design. 

We generated a fractional factorial efficient experimental design in Ngene 1.3.0 by ChoiceMetrics 
to identify the optimal combination of attribute levels in our DCEs. The final experimental design 
consisted of 30 choice sets, each containing three alternatives and a no-purchase option, and 
assigned into five blocks. Each respondent was randomly sorted into one of the five blocks and 
answered six choice sets. In addition to the aforementioned attention-check question, which always 
appeared after the third choice set, we randomized the six choice sets in each block to eliminate 
ordering effects. Figure 1 shows an example of a choice set. 

 

Figure 1. Example DCE Choice Set for the Cow’s Milk Survey 

Theoretical Framework and Econometric Model 

We use two DCEs to elicit consumers’ WTP for cow’s milk. A DCE is a stated preference method 
based on the assumption that respondents are rational individuals who make tradeoffs between 
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different product attributes when choosing the product that gives them the greatest utility. DCEs 
are commonly used to elicit consumer preferences and WTP for products featuring various 
attributes (Alpiza, Carlsson, and Martinsson, 2001; Louviere, Flynn, and Carson, 2010; Holmes, 
Adamowicz, and Carlsson, 2017). WTP represents the maximum amount a consumer is willing to 
pay to purchase a product. 

DCEs are based on Random Utility Theory, which posits that a decision maker, or respondent, will 
choose an alternative from the available choice set only if they expect to derive more utility from 
that specific alternative than the other alternatives presented (McFadden, 1974). While respondents 
know the utility they derive from the alternative, we observe which alternative they selected from 
the choice set. As a result, we have incomplete information about the respondent’s utility, and the 
observed utility is referred to as representative utility. The respondent’s utility function (𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖) can 
then be modeled as the sum of representative utility (𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖), which captures preferences for the 
alternatives and their respective attribute levels, and an error term (𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 ), which captures the 
unobserved factors influencing the respondent’s utility, such that: 

                                                                          𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 (1) 

where 𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖 is the utility derived by each respondent i when choosing option j out of the three 
product alternatives or a no-buy option evaluated in each choice set t. The observed component of 
the utility can be expressed as 𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖  = ꞵ𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖, where 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 is a vector of observed product attributes 
(i.e., QR code information, organic certification label, carbon footprint label, price), and ꞵ 
represents a vector of unknown utility coefficients to be estimated. 

To relax the restrictive assumptions of the conditional logit model and allow for heterogeneity in 
preferences, we utilize the mixed logit model, which treats parameters as random instead of fixed, 
such that parameters are distributed randomly across respondents and 𝛽𝛽𝑖𝑖 = 𝛽𝛽0 + 𝜎𝜎𝑣𝑣𝑖𝑖, where 𝛽𝛽0 is 
the population mean, 𝑣𝑣𝑖𝑖~𝑁𝑁(0,1), and 𝜎𝜎 is the standard deviation of the distribution of 𝛽𝛽𝑖𝑖 . We 
report a main effects model along with a model incorporating interactions (equation 2) to 
investigate whether consumer preferences for QR code traceability vary depending on  respondents’ 
frequency of scanning QR codes following the COVID-19 pandemic: 

             𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖 =  𝛽𝛽𝑝𝑝𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖 +  𝛽𝛽𝐴𝐴𝐴𝐴𝐴𝐴𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖 + 𝛽𝛽1𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖𝑖𝑖𝑖𝑖 + 𝛽𝛽2𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖 +
𝛽𝛽3𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖 + 𝛽𝛽4(𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖  × 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑖𝑖) + 𝛽𝛽5(𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖  × 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑖𝑖) +
𝛽𝛽6𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖 + 𝛽𝛽7𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖(1) + 𝛽𝛽8𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿ℎ𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖 +
𝛽𝛽9𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖. (2) 

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 denotes a dummy variable equal to 1 if a product carried the USDA organic label and 0 
otherwise. 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶  is a dummy variable equal to 1 if a product carries the Carbon 
Emissions Reductions Achieved Label from the Carbon Trust and 0 otherwise. Similarly, 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 and 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝑎𝑎𝑎𝑎 are dummies equal to 1 if a product carried the Carbon 
Emissions Reduction Planned or Footprint Lower Than Market labels from the Carbon Trust, 
respectively, and 0 otherwise. 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 is a dummy equal to 1 if the product carried the 
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USDA process-verified climate-friendly label and 0 otherwise. 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 × 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 
is an interaction term between 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, which is a dummy equal to 1 if a product has a 
blockchain QR code and 0 otherwise, and 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄, which is a respondent-specific dummy 
equal to 1 if the respondent indicated that they scanned QR codes more frequently following the 
COVID-19 pandemic and 0 otherwise. Similarly, 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 × 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 is an interaction term 
between 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 and 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁. The latter is a dummy equal to 1 if a product has no QR code 
and 0 otherwise. Consumer preferences for 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 and 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 are evaluated relative to a 
standard (non-blockchain) traceability QR code. 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 is a continuous variable, and NoBuy is an 
alternative-specific constant that equals 1 if the respondent chose not to buy any of the three 
product alternatives and 0 otherwise. We assume that the 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 variable has a fixed distribution, 
whereas all other variables, including the interactions, are assumed to have normal random 
distributions. 

Marginal Willingness-to-Pay 

To estimate the marginal WTP (MWTP) for attribute k, we calculate the ratio of that attribute’s 
estimated coefficient to the price coefficient, as shown below: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑊𝑊𝑊𝑊𝑊𝑊 =  −𝛽𝛽𝑘𝑘
𝛽𝛽𝑝𝑝

 (3) 

Additionally, for attributes where the mean of the preference parameter varies based on 
respondents’ frequency of QR code use (through the inclusion of an interaction term), the equation 
for MWTP incorporates both the estimated coefficient of the main effect and the coefficient of the 
interaction term. For example, the MWTP for blockchain technology in equation (2) would be 
calculated as -(𝛽𝛽2 + 𝛽𝛽4))/ 𝛽𝛽𝑝𝑝 for respondents who are more likely to scan QR codes after the 
COVID-19 pandemic (i.e., 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 = 1) and -(𝛽𝛽2)/ 𝛽𝛽𝑝𝑝 for those who are not more likely to 
scan QR codes post-pandemic (i.e., 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 = 0). 

To estimate our mixed logit model, we used the mixlogit command in StataSE 18 with 2,000 
Halton draws. We clustered the standard errors at the respondent level (Abadie et al., 2023), as the 
same respondents evaluated repeated choice sets. Hence, the unobserved utility for each 
individual’s choice between one set of alternatives is likely correlated with their choices in other 
sets. We calculate confidence intervals for the MWTP estimates using the Krinsky and Robb 
procedure (Krinsky and Robb, 1986, 1990). 

Results and Discussion 

Sample Description 

Table 2 provides a summary of the sociodemographic characteristics of our survey samples 
compared to the general U.S. population, as reported in the American Community Survey (U.S. 
Census Bureau, 2022). Overall, the samples are representative of the U.S. population in terms of 
gender, marital status, and employment. Approximately 50% of respondents in both surveys 
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reported being male and 50% being female, equivalent to the gender distribution in the U.S. 
population. Results from one sample t-test indicates that the means for gender, marital status, and 
part/full-time employment variables in both the standard DCE and geographical-price-informed 
DCE groups are statistically equal to the U.S. population means. The samples are also 
representative in terms of the 18–24 age group and the $34,999 or less income group, with no 
statistical difference between sample and U.S. population means. The average respondent age in 
the standard DCE survey was approximately 47 years and 48 years in the geographical-price-
informed DCE survey, compared to the U.S. population’s average age of 38.5 years in 2022. The 
higher average age of respondents in our samples is likely due to the inclusion criteria requiring 
respondents to be 18 years or older. We used county-level Rural-Urban Continuum Codes as 
defined by the USDA Economic Research Service to determine what percentage of our sample of 
respondents resides in rural (nonmetro) versus urban (metro) areas. Approximately 12% of 
respondents in the standard DCE survey sample and 14% in the geographical-price-informed DCE 
survey sample reside in counties classified as rural, compared to 20% of the U.S. population (U.S. 
Census Bureau, 2022). Lastly, we collected data on respondents’ purchase frequency. As required 
by our screening criteria, all participants in the completed sample reported purchasing cow’s milk 
within the past month. Among them, 73% reported buying conventional (nonorganic) cow’s milk 
at least once per month, whereas 42% indicated purchasing organic cow’s milk at the same 
frequency. 

Econometric Models and DCE Designs 

The mixed logit estimation results for both the standard DCE and the geographical-price-informed 
DCE, with main effects and interactions, are reported in Table 3. Across all models, the coefficient 
for the Price variable is negative and statistically significant, as expected. Similarly, the coefficient 
for the NoBuy variable is also negative and significant across all models, suggesting that 
respondents generally preferred selecting a product over the option not to buy. However, results 
also indicate significant heterogeneity in respondents’ preferences for the no-buy option. Our 
results confirm the hypothesis that the geographical price-informed DCE improves model fit 
compared to the standard DCE. The geographical price-informed DCE, which tailored the range 
of prices shown to respondents to reflect the prices they were more likely to encounter in their 
state of residence, resulted in a lower AIC and BIC and a higher log likelihood compared to the 
standard DCE, which used a uniform price range  across the entire United States. We find the same 
increase in model fit across all measures when conducting a preliminary analysis using the 
Conditional Logit Model (see Table A1 in Appendix). Previous literature shows that reducing price 
uncertainty improves model fit and enhances the precision of the estimation results (Lim and 
Wuyang, 2022; Kilders and Caputo, 2023). Consistent with findings by Kilders and Caputo (2023), 
our results indicate that model fit improves when the DCE design is informed by price vectors that 
are more closely aligned with respondents’ price expectations.  
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Table 2. Summary Statistics and Variable Definitions 
  

Standard DCE 

Geographical-
Price-Informed 

DCE USAa 
Variable Definition Mean 
Age  Age 18–24 0.11 0.09 0.09 
 Age 25–34 0.19 0.18 0.14 
 Age 35–44  0.17 0.15 0.13 
 Age 45–54  0.16 0.17 0.12 
 Age 55–64  0.17 0.19 0.13 
 Age 65 or older 0.21 0.21 0.17 
Genderb Female 0.49 0.50 0.50  

Male 0.50 0.50 0.50 
Ethnicity Hispanic or Latino (of any race) 0.09 0.08 0.19 
 Not Hispanic or Latino 0.91 0.92 0.81 
Race identity White or Caucasian  0.74 0.74 0.66  

Black or African American  0.13 0.18 0.12  
Another or multiple races 0.13 0.09 0.22 

Educational attainment High school degree or less 0.26 0.26 0.57  
Two-year or associate’s degree 0.24 0.23 0.09  
Four-year college or bachelor’s degree 0.35 0.35 0.21  
M.S. or doctoral degree 0.15 0.16 0.13 

Household sized # of persons per household 2.51 2.48 2.35 
Childrend # of < 18-year-old persons per 

household 
0.62 0.59 0.52 

Yearly household income before taxes $34,999 or less 0.22 0.23 0.23  
$35,000 to $74,999 0.38 0.36 0.27 

 $75,000 to $99,999 0.16 0.18 0.13 
 $100,000 to $149,999 0.14 0.13 0.17  

$150,000 or more 0.09 0.10 0.20 
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Table 2 (cont.) 
  

Standard DCE 

Geographical-
Price-Informed 

DCE USAa 
Variable Definition Mean 
Employmente Part-time or full-time employed 0.61 0.60 0.60 
 Unemployed 0.13 0.12 0.03 
 Stay at home parent or retired 0.27 0.28 0.37 
Marital status  Married 0.45 0.45 0.48  

Not married 0.55 0.55 0.52 
Number of respondents  557 554  

Notes:  

aSource: 2022 American Community Survey (ACS) 5-year estimates 
bU.S. statistics for grocery shoppers ≥ 18 years old 
cU.S. statistics for population ≥ 25 years old 
dU.S. statistics calculated as variable’s total population divided by total housing units 
eU.S. statistics for population ≥ 16 years old. Employment categories in the ASC are: employed civilian or armed forces in labor force, and not in labor force. 
Results of one sample t-tests indicate that the means for the gender, marital status, part/full-time employment variables in each group (standard DCE or 
geographical-price-informed DCE) are statistically equal to the means for those variables in the U.S. population. The means for variables indicating “Age 18–24” 
and “Income $34,999 or Less” in both groups are also statistically equal to the means in the U.S. population. 
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Table 3. Mixed Logit Estimation Results 
 Standard DCE Geographical-Price-Informed DCE 
 Main Effects Interactions Main Effects Interactions 
 Parameter Clust. SE Parameter Clust. SE Parameter Clust. SE Parameter Clust. SE 
Organic 1.176*** 0.123 2.017*** 0.726 1.176*** 0.137 1.544*** 0.216 
Blockchain  -0.078 0.080 -0.648 0.405 -0.158** 0.075 -0.570*** 0.132 
No traceability QR code -0.740*** 0.105 -0.941*** 0.289 -0.726*** 0.096 -0.708*** 0.154 
Blockchain × post-COVID   0.521 0.398   0.405* 0.230 
No QR code × post-COVID   -2.214* 0.978   -1.104** 0.439 
Carbon reduction achieved 0.741*** 0.165 1.536*** 0.428 0.613*** 0.159 0.737*** 0.204 
Carbon reduction planned 0.791*** 0.097 1.307*** 0.392 0.636*** 0.097 0.830*** 0.137 
Carbon lower than market 1.141*** 0.115 2.074*** 0.794 0.851*** 0.106 1.114*** 0.152 
USDA climate-friendly 1.029*** 0.099 1.936*** 0.718 0.805*** 0.098 1.108*** 0.148 
Price -1.061*** 0.075 -1.850*** 0.632 -1.191*** 0.115 -1.630*** 0.204 
No-buy -4.036*** 0.864 -11.781*** 4.404 -6.343*** 1.328 -9.653*** 2.210 
SD of random parameters         
Organic 1.326*** 0.283 1.614** 0.773 1.352*** 0.387 1.510*** 0.479 
Blockchain  0.011 0.010 1.275 1.115 -0.000 0.015 0.032 0.061 
No QR code 0.012 0.034 -0.142 0.231 -0.011 0.027 -0.026 0.134 
Blockchain × post-COVID   3.190*** 1.125   2.450*** 0.657 
No QR code × post-COVID   4.973*** 1.828   2.705*** 0.720 
Carbon reduction achieved 1.476*** 0.410 2.011 1.324 -1.375** 0.558 -1.973*** 0.653 
Carbon reduction planned -0.003 0.038 1.006 1.354 0.001 0.007 0.006 0.036 
Carbon lower than market 0.005 0.011 -0.037 0.053 0.005 0.065 0.043 0.082 
USDA climate-friendly -0.000 0.063 0.049 0.092 -0.087 0.243 -0.038 0.147 
No-buy 0.759 1.809 7.554** 3.117 2.572** 1.141 4.559*** 1.618 
No. of respondents (n) 557  557  554  554  
Log-likelihood -3,687.275  -3,627.099  -3,654.103  -3,614.467  
AIC 7,408.551  7,296.197  7,342.206  7,270.934  
BIC 7,536.061  7,453.71  7,469.625  7,428.334  

Note: ***, **, * indicate statistical significance at the 1%, 5%, and 10% levels, respectively.   
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Consumer Preferences for QR Code Traceability  

In Table 4, we report MWTP estimates for cow’s milk attributes in U.S. dollars per half-gallon 
carton. Overall, we find that while consumers value access to traceability information via standard 
(non-blockchain) QR codes, they discount or do not have strong preferences for blockchain 
traceability QR codes over standard traceability QR codes. In the main effects models, consumers 
in both DCE designs strongly prefer products with standard QR code traceability over those 
without any traceability QR codes. However, the parameter for blockchain QR codes was not 
significant in the standard DCE design, whereas in the geographical-price-informed DCE design, 
consumers preferred products with standard QR codes over those with blockchain QR codes. 
Specifically, we find a price premium of $0.70 in the standard DCE design for a half gallon of 
cow’s milk with a standard (non-blockchain) QR code relative to a carton with no QR code. This 
premium is $0.61 in the geographical-price-informed DCE design. In contrast, we find a price 
discount of $0.13 in the geographical-price-informed DCE design for a carton with a QR code 
providing access to blockchain-verified traceability information relative to one with no blockchain 
verification.   

In the models incorporating interaction terms, we included the variable 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 to account 
for the potential effect of changes in the frequency of QR code usage following the COVID-19 
pandemic. When asked about their QR code usage, 51% of respondents in the standard DCE design 
group and 53% of respondents in the geographical-price-informed DCE design reported scanning 
QR codes more frequently following the pandemic than they did before. We find that consumers 
preferred products with QR codes with access to standard traceability information over products 
without QR codes, regardless of whether or not their frequency of scanning QR codes changed 
following the pandemic. The price premiums associated with a standard traceability QR code 
among respondents who did not report increased QR code usage after COVID-19 was $0.52 in the 
standard DCE design and $0.44 in the geographical-price-informed DCE design. In contrast, 
respondents who indicated more frequent QR code scanning after the pandemic had notably higher 
premiums, valuing standard QR codes at $1.74 in the standard DCE design and $1.15 in the 
geographical-price-informed DCE design.  

We did not find a statistically significant price premium for blockchain technology across any of 
the models. The only significant result was that respondents who reported no increase in  QR code 
usage after the pandemic on discounted products with blockchain-verified QR codes by $0.35 
relative to those with standard QR codes in the geographical-price-informed DCE design. This 
result may indicate a general lack of interest in newer technology among this group. Individuals 
who did not increase their usage of QR code technology during a time of widespread adoption 
might also be less interested in new applications of that technology, such as blockchain-based QR 
codes for traceability. While we are unaware of any studies examining consumer preferences or 
price premiums for access to blockchain traceability through QR codes on cow’s milk, our results 
are contrary to findings from Li et al. (2023), who found preferences for cow’s milk products using 
blockchain for traceability. However, that study did not analyze preferences for accessing 
traceability information via QR codes.  
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Overall, our results indicate that consumers value having access to traceability information for 
cow’s milk available on the packaging. However, there were no price premiums associated with 
QR codes with blockchain technology, with some respondents even discounting products that 
carried them. These results align with previous research, which found that consumers do not 
perceive blockchain as being more valuable than other forms of verification methods, such as 
verification by the USDA (Shew et al., 2022). When respondents were asked about their trust in 
the U.S. government’s ability to efficiently monitor the food system to ensure the authenticity of 
food labels, 58% of our sample either agreed or strongly agreed, compared to only 44% for for-
profit companies. This trend holds across both surveys and among urban and rural respondents. In 
the standard DCE survey, 53% of rural and 57% of urban respondents stated that they agree or 
strongly agree in regard to the U.S. government, compared to 43% and 41% in regard to for-profit 
companies, respectively. In the geographical-price-informed DCE survey, these percentages were 
59% of both rural and urban respondents in regard to the U.S. government and 44% and 46% in 
regard to for-profit companies. This relatively higher level of trust in the U.S. government may 
help explain why, as we will discuss next, consumers were willing to pay more for USDA-verified 
organic and carbon footprint reduction labels but not for the blockchain-verified QR codes, which 
are often implemented by for-profit companies.  

Consumer Preferences for Organic and Carbon Footprint Claims 

Across all models and DCE designs, respondents consistently showed strong preferences for cow’s 
milk products featuring the USDA organic label over those without it, with all 95% confidence 
intervals in the positive domain. We find price premiums of $0.94–$0.98 for a half-gallon carton 
of cow’s milk with a USDA organic label relative to a carton with no organic label in the 
geographical-price-informed design and of $1.08–$1.11 in the standard DCE design. This result 
aligns with previous literature in which many studies found that consumers prefer organic over 
non-organic milk and are generally willing to pay a price premium for it (Bernard and Bernard, 
2009; Smith, Huang, and Lin, 2009; Akaichi, Nayga, and Gill, 2012; Lombardi, Berni, and Rocchi, 
2017; Feucht and Zander, 2018; Yormirzoev, Li, and Teuber, 2021; Badruddoza, Carlson, and 
McCluskey, 2022). However, the standard deviation of the organic parameter in the mixed logit 
model estimation is highly statistically significant, indicating heterogeneity in preferences among 
respondents. While previous literature shows that, in general, consumers are willing to pay a 
premium for organic cow’s milk, the magnitude of this premium varies considerably based on 
factors such as time, location, and consumer demographics. Additionally, prior studies indicate 
that consumer perceptions of organic milk’s health benefits, environmental impact, and animal 
welfare impact their valuation of milk products (Akaichi, Nayga, and Gill, 2012; Feucht and 
Zander, 2018; Yormirzoev, Li, and Teuber, 2021).       

Similarly, across all models and DCE designs, respondents strongly preferred products with any 
of the four carbon footprint labels to products without a carbon footprint reduction label, with all 
95% confidence intervals in the positive domain. This result is also in line with previous studies 
that have shown consumers prefer and are willing to pay a premium for cow’s milk products with 
carbon footprint labels or “climate-friendly” claims (Echeverría et al., 2014; Feucht and Zander, 
2018; Canavari and Coderoni, 2020). Among the carbon footprint labels evaluated, the Carbon 
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Lower Than Market label from the Carbon Trust garnered the highest premiums, with the 
estimated premiums ranging between $1.08–$1.12 in the standard DCE design and $0.69–$0.72 
in the geographical-price-informed DCE design. Respondents in both samples assigned the second 
highest premium to the USDA Process-Verified Climate-Friendly label, with premiums of $0.97–
$1.05 in the standard DCE design and $0.66–$0.68 in the geographical-price-informed DCE 
design. This result may suggest that the specific messaging and the way it is conveyed play an 
important role in shaping consumers’ perceptions and preferences for carbon footprint labels. 
Notably, labels such as “Carbon Lower Than Market” explicitly indicate that a product’s carbon 
footprint is below a preset benchmark in the market, which may resonate more with consumers 
than simply signal a reduction or plan to reduce the carbon footprint. While the USDA Climate 
Friendly label does not certify that a product’s carbon footprint is below the market average for 
comparable products like the Carbon Lower Than Market label, it does indicate that a product has 
a carbon footprint that is 10% lower than an industry benchmark. Consumers who want to reduce 
their environmental impact may favor products with labels that clearly indicate a lower carbon 
footprint compared to other products on the shelf. This preference may arise because such labels 
reassure consumers that the product’s footprint is lower than its competitors, rather than signal a 
reduction without context or comparison to other products on the shelf. For producers interested 
in incorporating carbon mitigation practices into their operations, these results suggest that 
pursuing certifications that demonstrate a product’s carbon footprint is lower relative to a defined 
benchmark, and they may be more effective at capturing consumers than certifications that only 
highlight broad carbon footprint reductions or plans. 

Consumers also preferred products with the Carbon Reduction Achieved and Carbon Reduction 
Planned labels relative to products with no carbon footprint labels, with all 95% confidence 
intervals again being in the positive domain. For the Carbon Reduction Achieved label, we find 
premiums of $0.69–$0.83 in the standard DCE design and $0.48–$0.54 in the geographical-price-
informed DCE design. We find similar price premiums for the Carbon Reduction Planned label, 
ranging between $0.72–$0.75 in the standard DCE design and $0.51–$0.53 in the geographical-
price-informed DCE design. Interestingly, we observe similar price premiums for labels indicating 
an achieved reduction (e.g., Carbon Reduction Achieved) and those indicating a planned reduction 
(e.g., Carbon Reduction Planned). This finding suggests that some consumers are willing to reward 
companies for their commitment to reducing their carbon footprint, even if the reduction is in the 
planning stage. Regarding heterogeneity in preferences for carbon footprint labels, the only carbon 
footprint label exhibiting a significant standard deviation was the Carbon Reduction Achieved 
Label from the Carbon Trust.   



Blockchain-Verified Traceability in Cow’s Milk Journal of Food Distribution Research 

July 2025  18 Volume 56, Issue 2 

Table 4. Marginal Willingness to Pay (MWTP) Estimates for Cow’s Milk Attributes (in US$/half gallon) 

Mean 
Standard 

DCE 

Geographical-
Price-Informed 

DCE 

  

  

  

 

Main 
Effects 
MWTP 

Interactions 
95% CI 

Main 
Effects 
MWTP 

Interactions 
95% CI MWTP 95% CI MWTP 95% CI 

Traceability QR codea 0.70 0.53, 0.86   0.61 0.47, 0.76   
Blockchain technology -0.07 -0.21, 0.08   -0.13 -0.26, -0.01   
Traceability QR code, if more 
likely to scan post-COVID    

1.74 1.03, 2.59 
  

1.15 0.67, 1.58 

Traceability QR code, if not 
more likely to scan post-
COVID   

0.52 0.33, 0.90 

  

0.44 0.27, 0.62 

Blockchain technology, if 
more likely to scan post-
COVID    

-0.09 -0.37, 0.33 

  

-0.12 -0.33, 0.12 

Blockchain technology, if not 
more likely to scan post-
COVID   

-0.34 -0.57, 0.19 

  

-0.35 -0.54, -0.19 

Organic 1.11 0.93, 1.28 1.08 0.86, 1.26 0.98 0.83, 1.14 0.94 0.79, 1.11 
Carbon reduction achieved 0.69 0.37, 1.03 0.83 0.58, 1.47 0.54 0.26, 0.85 0.48 0.24, 0.74 
Carbon reduction planned 0.75 0.58, 0.91 0.72 0.53, 1.11 0.53 0.39, 0.67 0.51 0.38, 0.66 
Carbon lower than market 1.08 0.90, 1.26 1.12 0.78, 1.32 0.72 0.56, 0.89 0.69 0.53, 0.87 
USDA climate-friendly 0.97 0.80, 1.15 1.05 0.76, 1.25 0.68 0.53, 0.84 0.66 0.52, 0.82 
Note: aTo facilitate interpretation, we report MWTP estimates for the presence of a (Standard) Traceability QR code relative to its absence. 
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Summary and Future Research 

With renewed interest in cow’s milk traceability to enhance food safety across the supply chain 
and meet consumer demand for transparency about food origins, company values, and agricultural 
production practices, identifying and evaluating ways to modernize food traceability systems has 
become increasingly relevant. The food industry is exploring blockchain technology as a potential 
tool to improve traceability throughout dairy supply chains. Blockchain can be used to quickly 
provide supply chain actors and consumers with information about product recalls and verify 
product authenticity, thereby reducing occurrences of fraudulent labeling. As with any emerging 
technology, determining its potential profitability is important for stakeholders along the supply 
chain. Knowing if consumers are willing to pay price premiums for blockchain-based traceability 
can help supply chain stakeholders examine its economic feasibility. In this study, we use two 
unlabeled DCEs to elicit consumer preferences and MWTP for various attributes of cow’s milk, 
including the presence of blockchain and standard (non-blockchain) traceability QR codes, USDA 
organic certification, and nonprofit and USDA-verified carbon footprint reduction labels. We also 
propose and evaluate the impact of a geographical-price-informed DCE design, which accounts 
for geographical price differences that more closely align price levels with those that respondents 
are likely to encounter in their respective markets, in a DCE on model fit. 

Our geographical-price-informed DCE design, which accounts for the variation in price ranges 
seen by consumers across different states in the United States, resulted in a better model fit as 
indicated by a lower AIC and BIC and higher log-likelihood. In addition, this approach resulted in 
more conservative marginal willingness-to-pay estimates. Since we do not conduct a repeated DCE, 
we cannot account for changes in price over time. However, we account for spatial price 
differences by presenting respondents with price ranges reflective of those in their state of 
residence. Future researchers can incorporate similar price vector methodologies into their DCE 
analyses or build upon our design to estimate more precise and conservative WTP estimates. 

We find that consumers prefer cow’s milk products with the USDA organic label to products that 
lack the label, with premiums ranging from $0.94–$0.98 in the geographical-price-informed DCE. 
Similarly, consumers preferred cow’s milk products carrying any of the four carbon footprint 
labels to products with no carbon footprint label. We found the highest carbon footprint label 
premiums for the Carbon Lower Than Market Label from the Carbon Trust ($0.69–$0.72 in the 
geographical-price-informed DCE) and the USDA Process-Verified Climate-Friendly Label 
($0.66–$0.68 in the geographical-price-informed DCE). This result suggests that consumers show 
favor to labels that indicate that a product has a lower carbon footprint than comparative products 
in the market.     

Additionally, our estimates indicate that consumers value access to traceability information for 
cow’s milk. Overall, we find that while consumers strongly prefer access to traceability 
information through QR codes over no QR codes, they are not willing to pay a premium for 
blockchain verification. Consumers are willing to pay a premium of $0.61 for a half-gallon carton 
of cow’s milk with a standard (non-blockchain) QR code providing access to traceability 
information relative to a carton with no QR code, but apply a price discount of $0.13 for a carton 
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with a QR code providing access to blockchain-verified traceability information relative to one 
with no blockchain verification. These preferences vary based on respondent’s QR code scanning 
frequency following the COVID-19 pandemic. The price premiums associated with a standard 
traceability QR code for those who scanned QR codes more frequently after the pandemic were 
notably higher ($1.15) compared to those who were not more likely to scan QR codes post-
pandemic ($0.44). In addition, those who scanned more frequently after the pandemic were 
indifferent to blockchain verification, whereas those who did not increase their QR code usage 
after the pandemic discounted blockchain-enabled QR codes by $0.35 relative to products that 
carried standard QR codes. This unwillingness to pay for blockchain verification could be 
explained by the fact that blockchain and its supply chain applications are still relatively novel to 
many consumers. 

Previous studies evaluating consumer preferences for blockchain traceability in various food 
products have estimated varying price premiums depending on the commodity examined and the 
location of the study (Lin et al., 2022; Shew et al., 2022; Collart et al., 2025). In our analysis, we 
do not find a price premium associated with blockchain-traceability QR codes, even after 
accounting for changes in QR code usage after the COVID-19 pandemic. However, we do find 
significant premiums for accessing product information for cow’s milk through standard QR codes, 
suggesting that accessing product information, in general, is more important to respondents than 
the technology used to verify the information. While blockchain technology remains a useful tool 
for quickly tracking and preventing foodborne illness outbreaks, consumers may not yet perceive 
the same value in this technology as retailers and producers do. More education about the benefits 
of blockchain may be necessary before consumers are willing to consistently pay a premium for 
access to blockchain-verified product information on cow’s milk products. 

For dairy producers and retailers, it is worth highlighting that implementing standard traceability 
QR codes may result in consumer price premiums, whereas blockchain-enabled QR codes may 
not result in a discount relative to a standard QR code. Despite this possibility, implementing 
blockchain technology along the supply chain could still be profitable due to cost savings 
associated with preventing and mitigating outbreaks of foodborne illness and other potential gains 
in production efficiencies. Blockchain could play an important role in ensuring food safety during 
periods when concerns around food safety and traceability are higher. Beyond food safety concerns, 
blockchain has been found to increase product quality and minimize costs and could still be a 
valuable tool within the dairy supply chain (Casino et al., 2021). 

Our research specifically investigates consumer preferences for the inclusion of QR codes with 
access to blockchain-verified product information in cow’s milk. However, consumer preferences 
for blockchain-verified product information could differ greatly depending on the commodity. 
Most existing research on blockchain traceability and associated price premiums has focused on 
products such as beef and leafy greens, which are more commonly linked to foodborne illness 
outbreaks than pasteurized cow’s milk (Lin et al., 2022; Shew et al., 2022; Collart et al., 2025). 
While pasteurized milk carries a lower risk, foodborne illness incidents have been reported, and 
consumers may have heightened food safety or quality concerns related to cow’s milk given the 
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recent publicity surrounding HPAI A(H5N1) outbreaks among dairy cows, which blockchain 
could help alleviate.  

Furthermore, our analysis captured preferences at one point in time. Although we provided 
respondents with background information about blockchain technology and its applications before 
the DCEs, this technology is still very novel, and many consumers are unfamiliar with it. As the 
technology becomes more mainstream and is more widely adopted across various supply chains, 
consumer valuations of the technology could evolve. Education to increase awareness about the 
technology and future research is needed to determine if consumers may value the inclusion of 
blockchain-verified information in years to come. Stakeholders along the dairy supply chain, such 
as retailers, could identify strategies to increase consumer familiarity with blockchain and its 
benefits. 

Lastly, this research evaluates consumer preferences for access to traceability information via QR 
codes and the use of blockchain technology to verify traceability information, but it did not assess 
the underlying reasons why consumers may value verified traceability information (e.g., food 
safety, origin, or sustainability attributes and product certifications). While blockchain can reduce 
the time it takes to identify a foodborne illness outbreak and create a verifiable record of a 
product’s journey along the supply chain, consumers may not perceive a direct benefit from the 
technology in terms of increased food safety. For example, companies could provide information 
about a recall to consumers using standard or blockchain-verified QR codes. Moreover, consumers 
may perceive that foodborne illness outbreaks or product recalls are more closely monitored by 
government agencies, whereas sustainability attributes and product certifications might be more 
prone to fraud. As such, consumer valuation of the technology may vary depending on the 
technology’s purpose (e.g., preventing foodborne illness outbreaks versus preventing labeling 
fraud). Because of price premiums associated with sustainability attributes and product 
certifications, such as organic and carbon footprint claims, there may be economic incentives for 
labeling fraud. Blockchain could be more valuable in assuring consumer trust in these claims. In 
fact, blockchain has already been applied to detect labeling fraud in the dairy supply chain (Leung 
et al., 2021). While we do not investigate preferences for blockchain QR code attributes based on 
their specific use case (i.e., to verify organic or carbon footprint label information), future research 
could examine this topic further.    
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Appendix 

 

Figure A1. Information on Blockchain Technology from Online Survey 

 

 

Figure A2. Information on Blockchain Technology and QR Codes in Agriculture from Online 
Survey 
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Figure A3. Example Cow Milk Product Information Website from Online Survey 
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Table A1. Conditional Logit Estimation Results 

 Standard DCE Geographical-Price-Informed DCE 
 Main Effects Interactions Main Effects Interactions 

 Parameter Clust. SE Parameter Clust. SE Parameter Clust. SE Parameter Clust. SE 
Organic 1.011*** 0.066 1.022*** 0.066 0.964*** 0.062 0.970*** 0.062 
Blockchain  -0.055 0.062 -0.390*** 0.080 -0.125** 0.059 -0.439*** 0.084 
No traceability QR code -0.628*** 0.073 -0.626*** 0.086 -0.597*** 0.071 -0.547*** 0.092 
Blockchain  
× Post-COVID   

 
0.628*** 

 
0.115   

0.554*** 0.116 

No traceability QR code  
× Post-COVID   

 
-0.003 

 
0.136   

-0.105 0.129 

Carbon reduction achieved 0.824*** 0.091 0.838*** 0.093 0.643*** 0.087 0.643*** 0.088 
Carbon reduction planned 0.663*** 0.077 0.662*** 0.078 0.496*** 0.072 0.501*** 0.072 
Carbon lower than market 0.976*** 0.084 0.995*** 0.084 0.715*** 0.081 0.724*** 0.082 
USDA climate-friendly 0.922*** 0.079 0.938*** 0.080 0.702*** 0.076 0.707*** 0.076 
Price -0.870*** 0.043 -0.876*** 0.043 -0.948*** 0.053 -0.953*** 0.053 
No-buy -3.210*** 0.173 -3.217*** 0.174 -3.919*** 0.216 -3.932*** 0.217 
         
No. of observed choices (N) 13,368  13,368  13,296  13,296  
Log-likelihood -3,697.86  -3,672.24  -3,663.19  -3,639.26  
AIC 7,413.720  7,366.472  7,344.384  7,300.515  
BIC 7,481.226  7,448.979  7,411.841  7,382.963  
Note: ***, **, * indicate statistical significance at the 1%, 5%, and 10% levels, respectively.   
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Table A2. Marginal Willingness to Pay (MWTP) Estimates from Conditional Logit (in USD) 
 Standard DCE Geographical-Price-Informed DCE 

 Main Effects Interactions Main Effects Interactions 

Mean MWTP 95% CI MWTP 95% CI 
MWT

P 95% CI MWTP 95% CI 
Traceability QR code  0.72 0.56, 0.88   0.63 0.49, 0.77   
Blockchain technology -0.06 -0.20, 0.08   -0.13 -0.25, -0.01   
Traceability QR code,  
if more likely to scan post-COVID    

0.72 0.47, 0.96 
  

0.68 0.49, 0.89 

Traceability QR code,  
if not more likely to scan post-COVID   

0.72 0.52, 0.91 
  

0.57 0.38, 0.77 

Blockchain technology,  
if more likely to scan post-COVID    

0.27 0.07, 0.47 
  

0.12 -0.05, 0.29 

Blockchain technology,  
if not more likely to scan post-COVID   

-0.44 -0.64, -0.27 
  

-0.46 -0.65, -0.29 

Organic 1.16 1.00, 1.33 1.17 1.01, 1.34 1.02 0.87, 1.17 1.02 0.88, 1.18 
Carbon reduction achieved 0.95 0.75, 1.13 0.96 0.76, 1.15 0.68 0.51, 0.85 0.67 0.51, 0.85 
Carbon reduction planned 0.76 0.59, 0.93 0.76 0.59, 0.93 0.52 0.38, 0.67 0.53 0.38, 0.68 
Carbon lower than market 1.12 0.94, 1.30 1.14 0.96, 1.32 0.75 0.59, 0.92 0.76 0.60, 0.93 
USDA climate-friendly 1.06 0.89, 1.23 1.07 0.90, 1.24 0.74 0.59, 0.89 0.74 0.60, 0.89 
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Figure A4. Map of High and Low-Cost States in Geographical-Price-Informed DCE 

 

Table A3. U.S. Average Retail Prices for Half-Gallon Containers of Cow’s Milk, October 2023 
Locations States Included Average Price (USD) 
High-cost region   

Northeast CT, DE, MA, MD, ME, NH, NJ, NY, PA, 
RI, VT 

$2.48 

Midwest IA, IL, IN, KY, MI, MN, ND, NE, OH, 
SD, WI 

$2.38 

South central AR, CO, KS, LA, MO, NM, OK, TX $2.34 
Southwest AZ, CA, NV, UT $2.36 
Alaska AK $2.08 

Low-cost region   
Southeast AL, FL, GA, MS, NC, SC, TN, VA, WV $1.84 
Northwest ID, MT, OR, WA, WY $1.52 

National   
USA All states (continental USA, excludes HI) $2.05 

 

High-cost regions 
Low-cost regions 
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