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Abstract 

Our study assesses the profitability of producing blueberries using a drip irrigation system by 
addressing the price and yield variability. We use deterministic and stochastic budgeting 
approaches. We extend the deterministic budget to the stochastic budget using Monte Carlo 
simulation and applying triangular distributions to blueberry prices and yield in Georgia. The net 
present value (NPV) of returns from a blueberry investment under a deterministic budget is 1 to 3 
times greater than under a stochastic budget. Under the stochastic approach, we study returns from 
blueberries by classifying growers based on their performance; thus, the study has direct 
implications particularly for Georgian and southeast growers in making investment decisions. 
Furthermore, the results will be helpful to farmers, researchers, and farm risk analyzers in assessing 
agricultural investment.  
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Introduction 

The stochastic nature of key parameters, such as policy, production, and economic variables 
inherently complicates agricultural decision making. This complexity is accentuated in the 
agricultural sector due to its unique and diverse risks, including institutional (policy and 
regulations), production (disease and weather), and economic (input and output prices) risks 
(Harwood et al., 1999; Thorne and Hennessy, 2007). These risks introduce volatility in pricing and 
production outcomes, necessitating a comprehensive approach to uncertainty management in 
agricultural business decisions. 

Variability in prices and yields represents significant risks in agriculture, impacting the 
predictability of farm income (Goodwin and Ker, 2002). Traditional methods that rely on historical 
averages may not capture the full spectrum of potential outcomes, making them insufficient in 
today’s variable markets (Carter and Dean, 1960; Grant, 1985). Consequently, adopting a 
probabilistic approach to account for uncertainties in yield and price provides a more reliable basis 
for decision making, accommodating the unpredictable nature of factors like market demand 
fluctuations and climatic conditions. 

This study enhances the traditional enterprise budgeting tool, a critical decision-making resource 
developed by extension teams at land-grant universities for various agricultural commodities and 
practices. Traditionally, these budgets have utilized a deterministic approach, tailored to specific 
growing conditions and inputs but have failed to account for the inherent variability in key factors, 
such as output quantity and price. By introducing stochastic elements into the budgeting process, 
this research adapts enterprise budgets to reflect better the uncertainties faced by blueberry growers 
in Georgia, providing a more robust framework for financial planning and risk assessment in 
agriculture. 

Blueberry is one of Georgia’s top 10 fruits and nuts commodities in terms of farm gate value, with 
a share of 42.3%, and contributed 2.45% of the total Georgia agricultural farm gate value in 2022 
(University of Georgia, 2024). According to the 2022 Georgia Farm Gate Value Report (2024), 
the total farm-gate value of blueberries was $449.4 million from 27,192 acres, produced from 118 
out of 159 counties in the state. Bacon County has been the top producer in the state, with the 
highest farm gate value in the past eight years. 

Deterministic and Stochastic Budget 

A deterministic budget provides financial outcomes based on fixed parameter values and assumes 
stable economic conditions, often not reflective of real-world scenarios (Fonsah and Hudgins, 
2007; Fonsah et al., 2010; Fonsah et al., 2018). In contrast, a stochastic budget incorporates 
uncertainty and randomness, evaluating potential outcomes across a spectrum of variables rather 
than relying on fixed inputs. This method is particularly effective in non-stationary environments 
where variability is inevitable. The stochastic model utilizes variable estimates to predict likely 
outcomes, thus integrating risk and uncertainty into financial projections (Elkjaer, 2000; 
Richardson, 2006). Employing the Monte Carlo simulation technique, stochastic budget extends 
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beyond single-point estimates to offer a probabilistic view that reveals the distribution of potential 
outcomes, providing deeper insights into the dynamics of agricultural economics. 

Georgia blueberry growers suffer price and output changes due to the cultivar used in production, 
production area, aggregate productivity, market, and timing (Fonsah and Hudgins, 2007; Fonsah 
et al., 2007; Fonsah et al., 2011). However, despite pricing and output variations, Georgia 
blueberry growers usually rely on deterministic enterprise budgets, which are usually the type of 
enterprise budgeting decision tools made available by extension specialists at land-grant 
universities. Awondo, Fonsah, and Gray (2017) found that the grower’s profit is overestimated by 
at least three times in a deterministic budget. Thus, we aim to incorporate risk associated with 
random variables like price and yield into Georgia’s blueberry budget and present a probabilistic 
approach to evaluating returns on blueberry investment in Georgia. Our specific objectives are to 
(i) revisit the deterministic blueberry budget for Georgia, (ii) transform the deterministic budget 
to a stochastic budget, and (iii) compare net present values (NPV) from the two budget systems. 

Several studies have used a probabilistic approach in farm enterprises. For example, Gummow and 
Patrick (2000), Rayburn (2009), Shalloo et al. (2004), and Werth et al. (1991) have utilized 
probabilistic approaches in the animal sector, whereas Elkjaer (2000), Ludena et al. (2010), Clancy 
et al. (2012), and Awondo, Fonsah, and Gray (2017) used them in the plant sector. Elkjaer (2000) 
recognizes Stochastic Budget Simulation (SBS) as a tool to estimate the overall cost to avoid 
statistical dependencies between variables. Ludena et al. (2010) present a greenhouse stochastic 
budgeting model incorporating risk to compare the production costs of flowers, taking pricing and 
flowering into account as stochastic components. Clancy et al. (2012) use nontraditional budgeting 
to estimate returns from willow and miscanthus in Ireland. Similarly, Awondo, Fonsah, and Gray 
(2017) consider price and yield as associated risk variables and provide the probability distribution 
of net present value and break-even year from producing muscadine grapes in Georgia.  

For the past five years (2018–2023), the University of Georgia College of Agricultural and 
Environmental Sciences Extension (UGA-CAES) prepared deterministic budgets for southern 
highbush blueberry. Fonsah et al. (2007) and Kunwar and Fonsah (2022) introduced the risk-rated 
budget analysis approach for southern highbush blueberries, whereas Fonsah (2008, 2011) 
developed one for rabbiteye blueberries. These papers use sensitivity analysis to evaluate the effect 
of price and yield fluctuations that capture the risk component that could affect trends in blueberry 
production. The what-if analysis allows us to evaluate net returns in a few different price-yield 
scenarios; however, it does not allow us to project the whole range of net returns (in between and 
out of the designated case). Building upon the deterministic budgets in Kunwar and Fonsah (2022), 
we develop a stochastic budget for blueberry growers in Georgia to set a new, more realistic 
standard for enterprise budgeting in blueberry production. 

Methodology 

Deterministic Budget 

To develop a deterministic budget, we considered two components, costs and returns, based on an 
acre of producing Southern Highbush blueberries in Georgia for a fresh market. We developed the 
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budgets for a production system using a drip irrigation system and plant density of about 1,210 per 
acre and a planted distance of 12 feet apart in a row and 3 feet between rows.  

A newly planted orchard will be fully productive in its fourth year. However, approximately 25% 
of blueberries can be harvestable from the second year of establishment (Fonsah et al., 2007; 
Kunwar and Fonsah, 2022). For the analysis of costs and returns in different years of production, 
we used the first three years as orchard establishment and the fourth and subsequent years as the 
full productive years. We collected input prices from farmers and agricultural vendors during the 
2020 Annual Blueberry Growers Meeting. The input price information is private and confidential, 
making accessing comprehensive data from farmers challenging. Therefore, we consulted with 
extension county agents who maintain close relationships with the farming community. We 
calculated average prices for our analysis to address the variability in input prices, which may arise 
due to factors, such as the purchase volume, the vendor's relationship with the grower, or the 
payment terms (cash versus credit). 

Total production costs were determined by estimating fixed and variable costs. Variable costs 
encompass land preparation, planting, fertilizers, weed and pest control, interest on operating 
capital, and harvesting and marketing expenses. Fixed costs include expenditures on tractors and 
equipment, overhead, management, and irrigation systems. Harvesting and marketing costs cover 
harvesting, custom packing, cooling, handling, and brokerage fees, which may vary annually 
depending on yield fluctuations. However, we assumed these costs would remain constant once 
the orchard reaches the full productive years, as we adopted a fixed yield for those years. 

To estimate costs associated with machinery and other equipment, we used standardized practices 
recommended by the Agricultural and Applied Economics Association (AAEA) Task Force on 
Commodity Costs and Returns (AAEA, 2000). We assumed machinery and equipment costs as of 
the price of 2020. We estimated the costs of machinery and equipment based on 10 acres because 
their full efficiency is not obtained if used under 4 acres (Fonsah et al., 2007; Bogati et al., 2023; 
Magar, Fujino, and Han, 2024). However, we later adjusted these costs by an acre to harmonize 
with other costs. We included parameters, such as percentage used for the crop, purchase price, 
salvage value, lifespan, depreciation, interest, tax, and insurance in all machinery and equipment 
costs. The calculation used a salvage value of 20%, an interest rate of 6.5%, and 1.5% as taxes and 
insurance (Kunwar and Fonsah, 2022). We assumed farmers would use all the new equipment 
when establishing a blueberry farm.  

For the returns side of the blueberry production, we estimated the price per pound (lb.) and the 
yield per acre based on multiple meetings and focus group discussions with growers, county agents, 
and blueberry economists. We used 15 years of production to estimate costs and returns, although 
blueberries can be harvested from an orchard for more than 15 years by adopting good agricultural 
practices (GAP). We used the blueberry price of $3 per lb., assuming it would remain constant 
throughout production. The expected yields for the second and third years are 1,700 lbs. and 4,000 
lbs./ acre, respectively, whereas from the fourth year onward, it is 7,000 lbs./acre. Accounting for 
a 5% loss during harvesting and packaging, adjusted yields in years 2, 3, and 4–15 are 1,615 lbs., 
3,800 lbs., and 6,650 lbs./acre, respectively. 
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To appraise the investment in blueberry production in Georgia, we calculated the net present value 
(NPV) of cash flows for 15 years. NPVs were estimated at two discount rates of 2% and 5% to 
capture the variability in the personal discount rate of growers.  

Stochastic Budget 

Unlike the deterministic budget, we described blueberry yield and price as random components 
and defined their distributions. We allowed simulation to model blueberry price and yield in 
Georgia. The costs were derived from input prices while acknowledging the challenge of capturing 
the variability of all input prices (Shrestha, 2015). Thus, we did not incorporate variability in input 
prices and used single-point estimates from the deterministic budget. Finally, we calculated NPVs 
from the total costs and the simulated yields and prices and used a probabilistic approach to 
evaluate NPVs. We applied the Monte Carlo simulation using triangular distribution for both price 
and yield. 

Monte Carlo Simulation Using Triangular Distribution 

Defining the probability distribution to model the price and yield in crop production is noteworthy 
during risk assessment and management (Ramirez, McDonald, and Carpio, 2010). We fitted the 
triangular distribution to represent the yield and the price variability of blueberries in Georgia.1 
The triangular distribution is used when we have small sample data (Hardaker et al., 2015) and to 
model agricultural price and yield data because the time series price and yield data for long periods 
are rare (Ramirez, McDonald, and Carpio, 2010). Moreover, the triangular distribution can define 
yield and price distribution when experts identify the minimum, maximum, and most likely values 
(Back, Boles, and Fry, 2000). We used the inversion of the cumulative distribution function (CDF) 
of triangular distribution for the simulation, which we discuss below. 

Probability density function (𝑓𝑓(𝑥𝑥)) and cumulative distribution function (𝐹𝐹(𝑥𝑥)) of a triangular 
distribution with the parameters a (minimum), b (maximum), and c (most likely) are given by, 

𝑓𝑓(𝑥𝑥) =  
2(𝑥𝑥 − 𝑎𝑎)

(𝑏𝑏 − 𝑎𝑎)(𝑐𝑐 − 𝑎𝑎) , 

=  
2(𝑏𝑏 − 𝑥𝑥)

(𝑏𝑏 − 𝑎𝑎)(𝑏𝑏 − 𝑐𝑐), 

𝑖𝑖𝑓𝑓 𝑥𝑥 ∈ [𝑎𝑎, 𝑐𝑐] 

𝑖𝑖𝑓𝑓 𝑥𝑥 ∈ [𝑐𝑐, 𝑏𝑏] 
 

(1) 

(2) 

𝐹𝐹(𝑥𝑥) =  
(𝑥𝑥 − 𝑎𝑎)2

(𝑏𝑏 − 𝑎𝑎)(𝑐𝑐 − 𝑎𝑎) , 

=  1 −  
(𝑏𝑏 − 𝑥𝑥)2

(𝑏𝑏 − 𝑎𝑎)(𝑏𝑏 − 𝑐𝑐), 

𝑖𝑖𝑓𝑓 𝑥𝑥 ∈ [𝑎𝑎, 𝑐𝑐], 

𝑖𝑖𝑓𝑓 𝑥𝑥 ∈ [𝑐𝑐, 𝑏𝑏], 

𝑠𝑠𝑎𝑎𝑠𝑠 𝑃𝑃1 

say 𝑃𝑃2 

(3) 

(4) 

 
1 We assume independence between prices and yields to simplify the analysis, making it accessible for extension 
agents and growers. This assumption aligns with the practical scope of data collected from a select group of 
participants at an annual meeting, where individual production levels are unlikely to influence market prices 
significantly. 
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In Figure 1, 𝑥𝑥1  =  𝑐𝑐 − 𝑎𝑎, 𝑥𝑥2  =  𝑏𝑏 − 𝑐𝑐, and the area of ΔT1 gives the probability of 𝑥𝑥 less than or 
equal to 𝑐𝑐.  

 

Figure 1. The Probability Distribution Function (PDF) of the Triangular Distribution 

Mathematically, 

𝑃𝑃(𝑥𝑥 ≤  𝑐𝑐) =  𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑜𝑜𝑓𝑓  𝛥𝛥𝑇𝑇1 =
1
2

× (𝑐𝑐 − 𝑎𝑎) ×
2

(𝑏𝑏 − 𝑎𝑎) =  
𝑐𝑐 − 𝑎𝑎
𝑏𝑏 − 𝑎𝑎

 (5) 

Now, taking equation (5) as a reference, if any random probability is smaller than P (x ≤ c), we 
use the inverse function of equation (3) to get 𝑥𝑥1 and, if any random probability is greater than P 
(x ≤ c), we use the inverse function of equation (4) to get 𝑥𝑥2. 

𝑃𝑃1 =  
(𝑥𝑥 − 𝑎𝑎)2

(𝑏𝑏 − 𝑎𝑎)(𝑐𝑐 − 𝑎𝑎) 

𝑜𝑜𝑎𝑎, 𝑥𝑥 = 𝑎𝑎 +�𝑃𝑃1 × (𝑏𝑏 − 𝑎𝑎) × (𝑐𝑐 − 𝑎𝑎) 
𝑖𝑖𝑓𝑓 𝑥𝑥 ∈ [𝑎𝑎, 𝑐𝑐] (6) 

𝑃𝑃2 =  1 −  
(𝑏𝑏 − 𝑥𝑥)2

(𝑏𝑏 − 𝑎𝑎)(𝑏𝑏 − 𝑐𝑐) 

𝑜𝑜𝑎𝑎, 𝑥𝑥 = 𝑏𝑏 − �(1 − 𝑃𝑃2) × (𝑏𝑏 − 𝑎𝑎) × (𝑏𝑏 − 𝑐𝑐) 
𝑖𝑖𝑓𝑓 𝑥𝑥 ∈ [𝑐𝑐, 𝑏𝑏] (7) 

P(x) is a random probability between 0 and 1. So, for P(x) ≤ P (x ≤ c), we use P1 = P(x) and  𝑥𝑥1 =
𝑥𝑥 from equation (6) and for P(x) >P (x ≤ c), we use P2 = P(x) and 𝑥𝑥2 = 𝑥𝑥 from equation (7). 
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Simulation Step 

For the simulation process in this study, the price and the yield were the input variables, and the 
NPV was the output variable. We allowed for the simulation of the yield from years 4 to 15 and 
the price from years 1 to 15. We obtained NPVs following the steps mentioned below. 

i. For each year from 4 to 15, we defined triangular distribution for yield by using maximum, 
minimum, and most likely yield to generate random yields in Equations (6) and (7). 

ii. We applied step (a) for the price for each year from 1 to 15. 

iii. To calculate the revenue for the corresponding years, we randomly selected yield and price 
in different years. 

iv. From the net cash flows derived using the revenue generated above in (c), we computed 
NPVs at 2% and 5% discount rates. 

v. We iterated the process from (a) to (d) 10,000 times. 
 

Survey Design 

A questionnaire was distributed to blueberry growers via email and personal meetings at the 
Annual Blueberry Growers Meeting in Alma County, Georgia, on January 8, 2020. A total of 40 
responses were obtained; 5 responses were received through email, and 35 were gathered from 
personal interviews at the grower's meeting. The questionnaire asked respondents to provide 
historical annual yield and price data for up to 15 years if the farmers were able to keep historical 
records. If not, it asked the farmers to provide the expected maximum, minimum, and most likely 
price and yield if they were to grow blueberries for the next 10 years, given their experience 
growing blueberries in Georgia.  

Results and Discussions 

Deterministic Budget 

The total cost of plants per acre (with a density of 1,210/acre) was $2,783 due to the $2.30 cost 
each for healthy and ready-to-plant blueberry bushes. Labor cost/acre was $242, and the total land 
preparation cost was $2,773/acre. In the first year of the establishment, the total operating costs 
were $6,947/acre.2 The total operating costs in the second and third years of the establishment 
were $1,458 and $1,437 per acre, respectively. The total harvesting and marketing costs in the 
second and third years were $3,375 and $7,942 per acre, respectively. In full production years, the 
total operating cost was estimated at $1,646/acre, and the harvesting and marketing costs were 
estimated at $13,899/acre. 

 
2 For a comprehensive breakdown of these costs across different years, see Kunwar and Fonsah (2022). This 
reference provides an extensive categorization of costs and is a complementary resource to our analysis.   
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In the first three establishment years, the total variable costs were estimated at $6,947.26/acre, 
$4,833.65/acre, and $9,379/acre, respectively. The total variable costs were estimated at 
$15,544.24/acre for each full productive year. The observed decrease in the total variable costs in 
the second year from the year can be attributed to a lack of costs for land preparation, planting, 
and planting materials. Also, there is an increase in the total variable costs from the second to the 
third year. The yield in the third year increased compared to the second year, making the harvesting 
and marketing/packaging costs higher in the third year. Similarly, the total fixed costs estimated 
for years 1, 2, 3, and 4–15 were $2,849.46/acre, $2,026.11/acre, 2,022.92/acre, and $2,054.23/acre, 
respectively, which included a fixed machinery cost of $1,521.3/acre every year. 

Table 1 shows the cash flows for the 15 years of production and the calculated NPVs at 2% and 
5% discount rates. The investment in blueberry production begins to yield positive returns from 
the third year and covers the original cost of the investment in the ninth year. The net present value 
at both discount rates was positive, implying that NPVs at discount rates between 2% and 5% are 
positive. Thus, the returns from blueberry production are profitable, making the investment 
attractive for Georgia growers. 

Table 1. Cash Flows and NPVs of Blueberry Production in Georgia, 2020 

Year Yield Price Return 
Variable 

Cost 

Returns 
over 

Variable 
Cost Total Cost 

Returns 
over 

Total Cost 
(Net Cash Flow) 

1 0 3 0 6,947.26 -6,947.26 9,796.72 -9,796.72 
2 1,615 3 4,845 4,833.65 11.35 6,859.77 -2,014.77 
3 3,800 3 11,400 9,379.00 2,021.00 11,401.92 -1.92 
4–15 6,650 3 19,950 15,544.24 4,405.76 17,598.47 2,351.53 
        
NPV at a discount rate of 2% (NPV@2%) = 12,128.70 
NPV at a discount rate of 5% (NPV@5%) = 7,187.17 
Note: Yield is measured in lbs. per acre, and returns, costs, and price are measured in dollars per lb. Values for 
years 4 to 15 are the same; thus, we do not report to save space. 

Stochastic Budget 

Table 2 shows the average maximum, minimum, and most likely yields and prices obtained from 
the blueberry growers. Since the variation in maximum and minimum prices and yields were high, 
we classified blueberry producers into different categories based on prices and yields obtained. 

Table 2. Summary Statistics of Expected Maximum, Minimum, and Most Likely Yield and 
Price of Blueberry Growers in Georgia, 2020 
 Mean Standard Deviation Minimum Maximum 
Minimum yield 3,456.76 1,980.40 900.00 8,000.00 
Most likely yield 6,459.46 2,514.90 2,000.00 12,000.00 
Maximum yield 10,910.81 4,415.87 4,000.00 20,000.00 
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Minimum price 1.42 0.98 0.20 4.00 
Most likely price 2.39 1.25 0.65 5.00 
Maximum price 4.04 1.92 1.00 7.50 
Note: Yield in lbs. per acre and price in dollars per lb. Source: Survey and authors’ calculations. 

Based on yield, we classified growers as “Top Producers” if their yield is above the average most 
likely yield and “Low Producers” if their yield is below the average most likely. Similarly, based 
on price, growers were categorized as “High-Price Receivers” if the received price was above the 
average most likely and “Low-Price Receivers” if the received price was below the average most 
likely. We calculated the average of maximum, minimum, and most likely yield and price for all 
categories. Interacting categories based on the price and yield, we have four groups of growers—
“top producers receiving high prices (TPRHP),” “low producers receiving high prices (LPRHP),” 
“top producers receiving low prices (TPRLP),” and “low producers receiving low prices (LPRLP),” 
(see Table 3).3 We also include the group “growers in general” without categorization. Figure 2 
shows the CDFs for all the groups after simulation.  

Table 3. Categorization of Georgia Blueberry Growers Based on the Price Received and 
the Yield, 2020 
Panel A:   Yield 
   Top Producer Low Producer 
   a c b a c b 
  Price 4,833.33 8,638.89 13,777.78 2,152.63 4,394.74 8,194.74 

High price 
receiver 

a 2.14 
TPRHP (27.27%) LPRHP (18.18%) c 3.57 

b 6.00 

Low price 
receiver 

a 0.48 
TPRLP (24.24%) LPRLP (30.30%) c 1.52 

b 2.60 
Panel B: 

 TPRHP LPRHP TPRLP LPRLP 

Yield range 8944.45 6042.11 8944.45 6042.11 

Price range 3.86 3.86 2.12 2.12 
Note: a, b, and c denote average minimum, average maximum, and average most likely, respectively. TPRHP 
represents top producers receiving high prices, LPRHP represents low producers receiving high prices, TPRLP 
represents top producers receiving low prices, and LPRLP represents low producers receiving low prices. Figures in 
the parentheses are the percentage of growers belonging to the group based on the most likely price and the most 
likely yield. 

Higher prices for greater yields give more returns, so there was a 100% chance of obtaining 
positive NPV at 2% and 5%. Therefore, for the TPRHP, blueberry production in Georgia is highly 

 
3 Our study categorizes growers based on yield and price but does not explicitly link these categories to their risk 
preferences. Understanding the risk aversion of different groups could enhance the analysis, and we recommend this 
as an avenue for future research. 



Profitability Assessment in Blueberry Industry  Journal of Food Distribution Research 

March 2025 36 Volume 56, Issue 1 

profitable. Figure 2a presents the cumulative distribution function of NPV respectively at two 
different discount rates. Unlike the TPRHP, blueberry production for the TPRLP is not conducive 
to investment. The chance of getting a positive NPV during the 15 years of production is almost 
0% at 2% and 5% discount rates (see Figure 2b).  

The chance of a positive NPV decreases from 100% to 67.72% and 63.63% at the discount rate of 
2% and 5%, respectively, if a producer belongs to LPRHP fails to maintain the productivity of the 
farm (see Figure 2c). Because the probability is greater than 50%, the investment in the production 
of blueberries is favorable.4 Growers in the category LPRLP do not obtain positive NPV during 
the 15 years of blueberry production. This category of farmers has a 0% chance of paying back the 
cost of their original investment (see Figure 2d).  

The probability of getting a positive NPV for the “growers in general” at a 2% discount rate is 
30.24%, and at 5%, it is 23.85% (see Figure 2e). These probabilities incorporate all the possible 
combinations of yields and prices. As the chance of a positive NPV is below 50%, the investment 
in blueberry production does not seem favorable in Georgia. 

(a) 

 

(b) 

  

(c) (d) 

 
4 The 50% threshold used in this analysis is a conventional benchmark, where an investment is considered favorable 
if the likelihood of achieving a positive NPV exceeds the likelihood of a loss. These standards balance risk and 
potential return and are suited to the moderate risk tolerance typical in agricultural investments. We leave it to future 
studies to explore alternative probability thresholds for evaluating investment favorability under conditions of 
uncertainty. 
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(e) 

 

 

Figure 2: Cumulative distribution functions of net present values for blueberry producers in 
Georgia, 2020 (a) top producers receiving high prices (b) top producers receiving low prices 
(c) low producers receiving high prices (d) low producers receiving low prices (e) growers in 
general 
 
Comparison and Discussion of Results from Deterministic Budget vs. Stochastic Budget.  

Table 4 presents the expected NPV from the deterministic budget and stochastic budget for all 
categories of producers. The comparison shows that the expected NPV from the traditional budget 
is only possible if a grower falls in the “top producer receiving high price group.” The expected 
NPVs from the deterministic budgets do not fall in any producers’ 95% confidence interval, 
including the “growers in general.” This discrepancy underscores a key distinction between the 
two budgeting approaches. 

Table 4. Comparison of NPV from the Deterministic and Stochastic Budget in Georgia, 
2020 

 
Discount 

Rate 
Expected 

NPV 

Lower 
Bound 

(95% CI) 

Upper 
Bound 

(95% CI) 
Chance of Positive 

NPV (%) 

Deterministic budget 2% 12,129   100 
5% 7,187   100 
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Stochastic budget      

TPRHP 2% 174,579 173,987 175,172 100 
5% 136,449 135,975 136,924 100 

TPRLP 2% -43,387 -43,648 -43,127 0 
5% -37,851 -38,059 -37,642 0 

LPRHP 2% 9,122 8,754 9,491 67.72 
5% 5,567 5,270 5,864 63.63 

LPRLP 2% -114,231 -114,391 -114,070 0 
5% -93,868 -93,997 -93,739 0 

Growers in general 2% -8,157 -8,480 -7,834 30.24 
5% -9,174 -9,433 -8,915 23.85 

Note: NPV in dollars per acre. TPRHP represents top producers receiving high prices, LPRHP represents low 
producers receiving high prices, TPRLP represents top producers receiving low prices, and LPRLP represents low 
producers receiving low prices. 

There is a 100% chance of a positive NPV for the TPRHP and a 0% chance for the LPRLP. The 
results show no chance of a positive NPV for the TPRLP. However, there is a significant chance 
of a positive NPV for the LPRHP. Analyzing the difference between the maximum and minimum 
yields and prices within the TPRLP and the LPRHP categories can provide valuable insights into 
why LPRHP might exhibit a higher potential for positive NPV but not the TPRLP.  

Table 3 shows that while the TPRLP has a yield range that is 1.48 times wider than the LPRHP 
(8,944.45 vs. 6,042.11 lbs. per acre), the LPRHP’s price range is 1.82 times wider than that of the 
TPRLP ($3.86 vs. $2.12 per lb.). The TPRLP experiences high yield variability, which could 
buffer against low prices. However, the lower and narrow price range limits their potential 
profitability. Lower prices diminish the benefits of high yields because the returns per unit are 
reduced. The LPRHP has lower yield variability, suggesting consistent and predictable production. 
The higher and wider range of prices compensates for its lower yields. This signals that high prices 
ensure substantial net revenue even with modest yields. Thus, growers need to focus on 
determinants of blueberry prices such as the berries’ quality, harvesting time, strategic marketing 
windows, and bargaining power (Kader, 2002; Yeh et al., 2023). 

To contrast traditional and nontraditional budgets, comparing the expected NPV from the 
conventional budget to the expected NPV from the stochastic budget for the “growers in general” 
group makes more sense because both are estimated for all the blueberry producers in Georgia. 
The expected NPV in the deterministic budget is 248.70% more than the expected NPV in the 
stochastic budget at a 2% discount rate and 178.34% at a 5% discount rate. The considerable 
difference in expected NPVs from different budget systems shows that the result from the 
traditional budget is unrealistic and unjustifiably optimistic. Our results align with those of 
Awondo et al. (2017), who depicted that the chance of getting a positive NPV from the non-
stochastic budget is 3 to 4 times greater than that from the stochastic budget. The chance of a 
positive NPV for the “top producers receiving high prices” (100%) is close to the findings of 
Fonsah et al. (2007), establishing a 92% estimated chance for profit in southern highbush blueberry 
production in Georgia. Similarly, the estimated chances of a positive NPV for the “low producers 
receiving high prices” (67.72% and 63.63% at the discount rate of 2% and 5%) are close to the 
figures obtained by Kunwar and Fonsah (2022), whereby an estimated 69% chance for profit was 
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prescribed for southern highbush blueberry production using drip irrigation and frost protection in 
Georgia. 

Conclusion 

The paper discusses blueberry’s profitability using two different kinds of budgets—deterministic 
and stochastic. For the simulation of prices and yields to develop a stochastic budget, we defined 
the triangular distribution using the minimum, maximum, and most likely values because the 
stochastic variable is better delineated by distribution. Thus, we interpreted the stochastic budget 
results using the chance (%) of getting a positive NPV at two discount rates, 2% and 5 %. Unlike 
the stochastic budget, the non-stochastic budget has a straightforward interpretation.  

The expected NPV in the deterministic budget is $12,129/acre at a 2% discount rate and 
$7,187/acre at a 5% discount rate. Except for a group of producers with high production and who 
receive high prices, no other groups have NPV higher than in the deterministic budget with 100%. 
The NPVs at 2% and 5% for a group “top producer receiving high price” are expectedly high, 
constituting 27.27% of blueberry growers in Georgia. Also, no chance of positive NPVs for a 
group of producers with low production and receiving low prices was estimated. We found no 
chance of positive NPVs in a group of “top producers receiving low prices.” 

In contrast, a significant percentage of positive NPVs in a group “low producers receiving high 
prices” was observed, signaling price as a critical determining factor for higher returns on 
investment. Specifically, a more relevant comparison between NPVs for the group “growers in 
general” and NPVs from the deterministic budget shows that a deterministic budget projects 
notably higher (1 to 3 times) NPVs than the stochastic budget. Despite negative expected NPVs 
for a group of “growers in general,” there is a certain chance (23.85%–30.24%) of getting a 
positive NPV.  

This study was primarily focused on farmer-level prices and yield of blueberries, for which data 
from the primary source are critical. Any data from the secondary source could be used as a 
reference but is irrelevant to making farmer-level conclusions. Because the price and yield data of 
the commodity are confidential and growers are concerned about it, we found it difficult to obtain 
primary data for such kinds of studies. 

A limitation of this study is that we do not consider costs (input prices) as stochastic variables. 
Considering input prices as random variables and applying a similar approach improves the study’s 
findings and is a possible extension of our work. Finally, the takeaway message is that depending 
solely on the deterministic enterprise budget can mislead farmers regarding investment and returns. 
The estimates from the traditional assessment approach can underestimate or overestimate the real 
production scenarios of any farm crop. A better understanding of all the potential stochastic 
variables and proper definition of their distributions yields more accurate and precise estimates of 
the outcome variables.  

While stochastic budgeting helps model uncertainty in agricultural economics, its adoption across 
the farm industry is restricted by computational complexity and a widespread lack of specialized 
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training. Recognizing these barriers, it is crucial for Extension Agricultural Economists at land-
grant universities to elevate their educational offerings, emphasizing training in stochastic 
budgeting techniques. Developing a stochastic budget that complements the traditional partial 
enterprise budgets produced annually for various horticultural crops can improve decision making 
among growers. 

Our study is based on data from specific grower categories in Georgia, which may not fully reflect 
the broader variability in agricultural practices or market dynamics. As such, the findings are 
primarily applicable within similar environmental and economic contexts. Future research should 
explore these dynamics across more diverse regions to enhance the generalizability of our results. 
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